L1 and GAD65 are expressed on dorsal commissural axons in embryonic rat spinal cord.
نویسندگان
چکیده
Using immunocytochemical methods, the cell adhesion molecule L1 was detected on axons crossing in the dorsal commissure of developing rat spinal cord. Immunoreactive axons were found in locations similar to fiber bundles illustrated by Ramón y Cajal and designated the anterior, middle and posterior bundles of the dorsal commissure. L1-immunoreactive dorsal commissural axons were first observed on embryonic day 17 (E17), appeared more numerous by E19, and remained detectable in early postnatal ages. The massive middle axon bundles extended bilaterally from the dorsolateral funiculi towards the midline and crossed in the central part of the commissure. In horizontal sections, bundles of L1-labeled middle axons were observed to traverse the dorsal commissure in a periodic pattern along the entire rostrocaudal extent of the spinal cord. Bundles of glutamic acid decarboxylase (GAD65)-positive axons were detected crossing in the middle and posterior regions of the dorsal commissure between E17 and E20. Results from double-labeling experiments demonstrated that GAD65-positive fibers were embedded in larger bundles of L1-labeled axons and that some dorsal commissural axons were double-labeled. To determine if there were axons crossing in the dorsal commissure that did not express L1, double-labeling experiments were conducted using neurofilament and L1 antibodies. Results indicated that bundles of axons identified with anti-neurofilament antibodies were also L1-positive, whereas individually coursing axons within the commissure were L1-negative. The predominance of L1 on fiber bundles traversing the dorsal commissure adds to the growing evidence that this molecule may play a role in axon outgrowth and fasciculation.
منابع مشابه
Embryonic GABAergic spinal commissural neurons project rostrally to mesencephalic targets.
Although spinal commissural neurons serve as a model system for studying the mechanisms that underlie axonal pathfinding during development, little is known about their synaptic targets. Previously we identified a group of ventromedially located commissural neurons in rat spinal cord that are gamma-aminobutyric acid (GABA)-ergic and express L1 CAM on their axons. In this study, serial sagittal ...
متن کاملDissection and culture of commissural neurons from embryonic spinal cord.
Commissural neurons have been widely used to investigate the mechanisms underlying axon guidance during embryonic spinal cord development. The cell bodies of these neurons are located in the dorsal spinal cord and their axons follow stereotyped trajectories during embryonic development. Commissural axons initially project ventrally towards the floorplate. After crossing the midline, these axons...
متن کاملExpression of L1 decreases during postnatal development of rat spinal cord.
L1 is a cell adhesion molecule that is highly expressed on developing axons and is associated with neurite outgrowth, guidance, and fasciculation. In this study we systematically examined L1 expression at all spinal levels across eight postnatal ages to detect regional and developmental differences. We observed striking changes in the developmental pattern of L1 expression between birth (P0) an...
متن کاملAxon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord.
Gradients of diffusible long-range attractant and repellent proteins have been proposed to guide growing axons during nervous system development, but such gradients have never been visualized directly. In the embryonic spinal cord, commissural axons pioneer a circumferential trajectory to the floor plate at the ventral midline directed by secreted proteins of the netrin family. In the embryonic...
متن کاملAnterior-posterior guidance of commissural axons by Wnt-frizzled signaling.
Commissural neurons in the mammalian dorsal spinal cord send axons ventrally toward the floor plate, where they cross the midline and turn anteriorly toward the brain; a gradient of chemoattractant(s) inside the spinal cord controls this turning. In rodents, several Wnt proteins stimulate the extension of commissural axons after midline crossing (postcrossing). We found that Wnt4 messenger RNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research. Developmental brain research
دوره 125 1-2 شماره
صفحات -
تاریخ انتشار 2000